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Abstract. A fundamental ecological modeling task is to estimate the probability that a
species is present in (or uses) a site, conditional on environmental variables. For many species,
available data consist of ‘‘presence’’ data (locations where the species [or evidence of it]
has been observed), together with ‘‘background’’ data, a random sample of available
environmental conditions.

Recently published papers disagree on whether probability of presence is identifiable from
such presence–background data alone. This paper aims to resolve the disagreement,
demonstrating that additional information is required.

We defined seven simulated species representing various simple shapes of response to
environmental variables (constant, linear, convex, unimodal, S-shaped) and ran five logistic
model-fitting methods using 1000 presence samples and 10 000 background samples; the
simulations were repeated 100 times. The experiment revealed a stark contrast between two
groups of methods: those based on a strong assumption that species’ true probability of
presence exactly matches a given parametric form had highly variable predictions and much
larger RMS error than methods that take population prevalence (the fraction of sites in which
the species is present) as an additional parameter. For six species, the former group grossly
under- or overestimated probability of presence. The cause was not model structure or choice
of link function, because all methods were logistic with linear and, where necessary, quadratic
terms. Rather, the experiment demonstrates that an estimate of prevalence is not just helpful,
but is necessary (except in special cases) for identifying probability of presence. We therefore
advise against use of methods that rely on the strong assumption, due to Lele and Keim
(recently advocated by Royle et al.) and Lancaster and Imbens. The methods are fragile, and
their strong assumption is unlikely to be true in practice. We emphasize, however, that we are
not arguing against standard statistical methods such as logistic regression, generalized linear
models, and so forth, none of which requires the strong assumption.

If probability of presence is required for a given application, there is no panacea for lack of
data. Presence–background data must be augmented with an additional datum, e.g., species’
prevalence, to reliably estimate absolute (rather than relative) probability of presence.

Key words: availability; background; identifiability; logistic; measuring use vs. non-use; presence–
background; prevalence; resource selection; species distribution model.

INTRODUCTION

We study a modeling task that is central to two

related bodies of ecological literature. Ecologists study-

ing a broad range of species wish to map species’

distributions or predict the suitability of sites for

occupation or persistence of the species (Franklin

2010), while ecologists investigating resource selection

by animals seek to characterize those areas within a

region of interest that are ‘‘used’’ by a particular species

or individual animals (Manly et al. 2002). In both cases,

the data at hand frequently consist of a collection of

geographic locations with evidence of presence of (or use

by) the species, together with data on environmental

covariates in the region of interest, termed background

(or available or sometimes pseudo-absence) data (Aarts

et al. 2012). In this paper we investigate statistical

methods that estimate the probability that the species is

present at a site (respectively, the probability that it uses

the site) conditional on environmental covariates.

Methods for estimating probability of presence and

related indices are important; they have been used

extensively for a variety of applications in ecology and

conservation, and according to Google Scholar, a

seminal resource selection text (Manly et al. 2002) has

been cited 2170 times while an influential species

distribution modeling paper (Elith et al. 2006) has

received 1926 citations at the time of writing.

Although there is shared concern over terminology

and model interpretation in the two bodies of ecological

research—what defines use rather than a transitory or
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chance visit, how to define and determine absence or

non-use, what delimits the available area from which the

species is selecting sites, what ecological interpretation

can be given to model outputs (Pulliam 2000, Johnson et

al. 2006, Lele and Keim 2006, Jiménez-Valverde et al.

2008, Beyer et al. 2010, Desrochers et al. 2010, Franklin

2010)—we focus here on the underlying statistical

questions rather than the difficulties of ecological

interpretation. In particular, we study logistic models

of probability of presence or use. For brevity, we will use

only the ‘‘presence’’ and ‘‘background’’ terminology

from here on. We also restrict our attention to the case

that presence samples are independent, as opposed to

spatially and temporally autocorrelated samples derived

from wildlife telemetry (Aarts et al. 2008), and free from

spatial bias in sampling effort (Phillips et al. 2009).

Furthermore, we assume a discretized sample space in

which the study area is partitioned into a set of sites

(e.g., derived from a rectangular grid), and each presence

sample consists of a site drawn uniformly from the

subset of sites that is occupied by the species. While

other sampling models have been developed for inde-

pendent presence data (for example, regarding presence

samples as dimensionless points in point-process models;

Chakraborty et al. 2011, Aarts et al. 2012), the discrete-

space model is most natural for the modeling methods

and the statistical question that we study here. We

emphasize that probability of presence of a species

depends not only on the distribution of the species itself,

but also on how a site is defined: a species is more likely

to be present in a larger site than a smaller site with the

same conditions.

In practice, exponential models are most often used

for presence–background data, fitted using logistic

regression (Manly et al. 2002) or the maximum entropy

method (Phillips et al. 2006), in both cases providing a

maximum-likelihood estimate of relative probability of

presence (also called a resource selection function, or

RSF). The output of these methods is proportional to

absolute probability of presence, but the constant of

proportionality is not generally known. Exponential

models also have the drawback of being unbounded

above, so that if their estimates are rescaled in an

attempt to estimate absolute (rather than relative)

probabilities, estimates greater than 1 may be obtained

(Keating and Cherry 2004, Ward et al. 2009). Models of

absolute probability of presence would therefore be

preferable, especially logistic models, which are natu-

rally bounded within [0, 1]. Maxent estimates are

typically post-processed to produce logistic models

(Phillips and Dudı́k 2008), but the result is no longer

a maximum-likelihood model, and it will not generally

give a good estimate of absolute probability of presence

unless additional information is available to inform a

parameter (s) used in the post-processing (Elith et al.

2011). Exponential models are not the only models

used: in the species distribution modeling literature,

‘‘naive’’ logistic models are sometimes simply fitted to

presence–background data, treating the background as

if it were absence (Ferrier et al. 2002, Elith et al. 2006).

The resulting models are not proportional to probabil-

ity of presence, but they are monotonically related

(Phillips et al. 2009), which is sufficient for some

applications, such as when model outputs are thresh-

olded to yield binary values (although some threshold

rules are sensitive to the amount of background data),

or when only rankings are of interest. Li et al. (2011)

proposed converting a naive model to a model of

absolute probability of presence using the assumption

that species’ probability of presence reaches 1 at some

‘‘prototypical’’ sites; we have critiqued this approach

elsewhere (Phillips 2012).

Beyond these, existing maximum-likelihood logistic

methods for presence–background data include those of

Steinberg and Cardell (1992), Lancaster and Imbens

(1996), Lele and Keim (2006), the Expectation-Maxi-

mization approach of Ward et al. (2009) and the scaled

binomial loss of Phillips and Elith (2011), which we will

refer to as the SC, LI, LK, EM, and SB methods,

respectively. Lee et al. (2006) proposed an approach that

is closely related to the LI method. The LK method

recently was strongly advocated by Royle et al. (2012),

who proposed maximizing the same likelihood function

(Royle et al. 2012: Eq. 4, Lele and Keim 2006: Eq. 1).

Lancaster and Imbens (1996) and subsequent authors

have noted that with enough presence–background

data, we can determine relative probability of presence

of the species conditional on environmental conditions.

This means that the species’ probability of presence can

be determined up to a multiplicative constant of

proportionality, but identifiability of the constant of

proportionality is a concern. (Note that we can discuss

the constant of proportionality without assuming any

particular model structure, and in particular, we are not

talking about the intercept of a logistic model.) If we

knew the population prevalence of the species (the

fraction of sites in the study area in which the species is

present), this would serve as an additional constraint

that would determine the constant of proportionality.

However, Ward et al. (2009) formally proved that

prevalence is not identifiable from presence–back-

ground data if we make no assumptions about the

structure of the true probability of presence. The idea of

the proof is simple: if we imagine two species for which

one has exactly half the probability of presence of the

other (i.e., exactly the same covariates affect both

species in the same way, but one is less common than

the other), then presence records for the two species are

identically distributed and therefore cannot be used to

distinguish between the two species. Probability of

presence is identifiable if we make a strong assumption

about the structure of the species’ probability of

presence, but Ward et al. (2009) suggest that such an

assumption is unrealistic. Our primary purpose in this

paper is to explain this assumption and why it is
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unrealistic, and demonstrate that it can result in very

unreliable models.

The crux of the identifiability issue is that if two

estimates of a species’ probability of presence derived

from presence–background data are exactly proportion-

al (i.e., one is a constant times the other), then their

likelihoods (e.g., as defined by Eq. 1 of Lele and Keim

2006) are equal. Therefore, each fits the data exactly as

well as the other, so there is no way to choose between

them. The LI and LK methods circumvent this problem

by severely restricting the available set of models, so that

no two can be proportional. They do this by making the

strong assumption that the true conditional probability

of presence of the species is exactly logit-linear in the

predictor variables. This addresses the problem, because

no two logit-linear functions are exactly proportional,

although with some previously ignored exceptions, e.g.,

constant functions. Lele and Keim (2006) and Royle et

al. (2012) consider other link functions in addition to the

commonly used logit link, and while our analysis applies

equally in that case, we will for simplicity restrict our

discussion to the logit link.

Royle et al. (2012:545) made the strongest claims

about the LI/LK approach: their abstract claims ‘‘we

demonstrate that [probability of presence] is identifiable

using conventional likelihood methods under the

assumptions of random sampling and constant proba-

bility of species detection,’’ without mention of any

other assumptions. Indeed, they claim that ‘‘lack of

identifiability of occurrence probability is not a general

feature of presence-only data’’ (Royle et al. 2012:550)

and that the problem of identifiability can be solved

simply by choosing a suitable parametric model (e.g.,

logistic) as long as not all covariates are categorical,

citing Lele and Keim (2006). However, these claims are

incorrect, as we will demonstrate with a collection of

examples. Simply put, the choices made by the modeler

cannot overcome an inherent limitation of the available

data. Similarly, Dorazio (2012:1304) describes the LK

method and a variant of the LI method (Lee et al. 2006)

as ‘‘approaches for estimating [probability of occur-

rence] that do not require knowledge of species

prevalence,’’ without mention of any restrictive assump-

tions. In addition, Dorazio (2012:1304) credits the

point-process model of Warton and Shepherd (2010)

with providing ‘‘an estimate of species abundance, and

therefore occurrence, at any location’’ using presence-

only data. However, the point-process approach models

the density of presence records, not species abundance

(W. Fithian and T. Hastie, unpublished manuscript), and

therefore does not provide an estimate of probability of

presence.

The strong parametric assumption of the LI and LK

methods makes these methods very different from

standard logistic regression. The assumption is not

justified by any ecological theory; there is no reason to

expect that the logit of the probability of presence of any

species should be exactly linear in any predictor

variable. In contrast, with careful choice of predictors,

we can often expect that linearity is a good approxima-

tion of the truth, as is required for standard logistic

regression. Although this distinction may seem slight, it

is important: this paper demonstrates the risks of the

strong parametric assumption with a collection of simple

examples in which even a small deviation from the

strong assumption results in very poorly calibrated

models.

The risky assumption can be avoided, for example, by

taking an estimate of population prevalence as an

additional parameter, as is done by the SC, EM, and

SB methods. The estimate could derive from limited

presence–absence surveys (which may be difficult and

expensive to obtain, especially for large sites and/or

cryptic species) or from expert opinion. In either case,

the estimate may involve substantial uncertainty;

nevertheless, in our simple examples, the EM, SC, and

SB methods strongly outperform the LI and LK

methods even when there is a moderate amount of

uncertainty in the prevalence estimate. However, we

emphasize that comparing LK/LI to SC, EM, and SB is

not an ‘‘apples to apples’’ comparison. We are not

placing them on a level playing field, because the latter

methods are given an additional piece of data. The

purpose of the comparison is to demonstrate that the

additional datum is not just helpful (as would be

obvious), but required. Without the additional datum,

the LK and LI methods produce models that are

proportional to probability of presence, but they do

not correctly estimate the constant of proportionality

except in special cases or by good fortune.

We note that some of the ideas that we further

develop here first appeared in published conference

proceedings, along with Fig. 4 (Phillips and Elith 2011).

FIVE LOGISTIC METHODS FOR PRESENCE–

BACKGROUND DATA

Here we present an overview of five available

maximum-likelihood-based methods for deriving logistic

models from presence–background data. These methods

are all compared in the experimental comparison that

follows. Let L be the landscape of interest, and L1 and

L0 be the subsets of L in which the species is present or

absent, respectively. Let P be a set of presence samples

(drawn uniformly from L1) and B a set of background

samples (drawn uniformly from L). We use y to

represent the presence (y ¼ 1) or absence (y ¼ 0) of the

species, and s to represent sampling stratum: s ¼ 1 for

samples in P and s ¼ 0 for samples in B. We are

concerned with parametric logistic models, i.e., our

models take the following form:

Prðy ¼ 1 j x; bÞ ¼ 1

1þ exp½�gðxÞ�

where g (x) is a function of the set of predictor variables,

x, described by the set of parameters, b; we will assume

for simplicity of this presentation that g is just a linear
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function with coefficients b. Given these definitions, we

now describe the existing methods for determining the

parameters b. Three of the methods (EM, SC, and SB)

require as an additional input an estimate of the species’

prevalence Pr(y ¼ 1), which we denote by p.

The LK method

The LK method (Lele and Keim 2006, Lele 2009)

defines the log likelihood of the presence samples asX
x2P

ln Prðx j y ¼ 1; bÞ:

Applying Bayes’ rule and dropping terms that do not

depend on b yields the objective

X
x2P

ln
Prðy ¼ 1 j x; bÞ

Prðy ¼ 1; bÞ ð1Þ

which can be rewritten as:X
x2P

ln Prðy ¼ 1 jx; bÞ � jP j ln Prðy ¼ 1; bÞ:

The background data are used to give an empirical

estimate of the second term, resulting in the objective:

X
x2P

ln Prðy ¼ 1 jx; bÞ � jP j ln

X
x2B

Prðy ¼ 1 j x; bÞ

jB j : ð2Þ

Here jPj is the number of presence samples and jBj is the
number of background samples, and the species’

prevalence (the average probability of presence over

the whole landscape) has been approximated by the

average probability over the background samples.

Standard numerical optimization techniques (Lele and

Keim 2006) or more involved methods (Lele 2009) are

used to find the coefficients b that maximize Eq. 2.

Eq. 1 can be thought of as a relative likelihood; it

describes the probability of the presence records (in the

numerator) relative to the probability averaged over all

sites (i.e., the prevalence, in the denominator). If we

multiply all probabilities by a constant, that constant

will factor out of the ratio. Therefore, if two models are

proportional, they have exactly the same log likelihood.

With enough data, the LK method therefore finds a

model that is as close as possible to being proportional to

the species’ true probability of presence. In other words,

although the LK method aims to estimate absolute

probability of presence, the likelihood it uses (Eq. 1)

measures only relative probability of presence. Therefore

it may not yield a good approximation of absolute

probability of presence, because its predictions can be

off by a constant factor. The method has only been

proven to estimate absolute probabilities in special

cases, e.g., if the true species probability of presence

and the fitted model are both exactly logit–linear and

not all predictors are categorical (Lele and Keim 2006).

However, we note the need for an additional condition

in our experiment, namely that the species’ response

must be nonconstant.

The EM method

Expectation-Maximization (EM) is a general-purpose

algorithm for estimating missing data during model-

fitting (Dempster et al. 1977). It is naturally applied to

presence–background data by regarding the the value of

y for background samples as missing data (Ward et al.

2009). EM works in a sequence of iterations, each time

improving its estimate of the missing data. To start, the

value of y at each background point is initialized to p. A
‘‘Maximization’’ step is then performed, which fits a

maximum-likelihood logistic model to the current values

of y, with a case-control adjustment to account for

unequal sampling rates of presences and absences. An

‘‘Expectation’’ step then applies the model to update the

estimates of the missing data, i.e., the values of y at the

background points. This process is repeated until

convergence. The species’ prevalence p is needed both

in the initialization step and in the case-control

adjustment.

The SC method

The SC method (Steinberg and Cardell 1992) begins

by considering, as a thought experiment, the log

likelihood of the entire landscape L. This log likelihood

is most naturally written as two sums, over sites in L0

and L1, respectively. The primary insight of the SC

method is that the log likelihood can be rewritten in a

way that the sums are either over all of L or over L1:X
x2L0

ln½1� Prðy ¼ 1 jx; bÞ� þ
X
x2L1

ln Prðy ¼ 1 jx; bÞ

¼
X
x2L

ln½1� Prðy ¼ 1 j x; bÞ�

þ
X
x2L1

�
ln Prðy ¼ 1 jx; bÞ � ln½1� Prðy ¼ 1 j x; bÞ�

�
:

These two sums then can be estimated empirically using

the samples B and P, respectively (similarly to Eq. 2).

Combining terms and simplifying yields a pseudo-

likelihood that approximates the log likelihood of LX
x2B

�lnð1þ exp½gðxÞ�Þ þ p jB jgðlÞ ð3Þ

where l is the vector of means of predictor variables

over P. Eq. 3 can be maximized using standard

numerical optimization techniques.

The SB method

The scaled binomial loss (SB) method applies existing

logistic model-fitting methods, using a modification to

the standard binomial loss function in order to deal with

presence–background data (Phillips and Elith 2011). Let

fp be the fraction of presence samples in the training

data, i.e., fp ¼ jP j /( jP j þ jB j). Following Lancaster

and Imbens (1996), we regard the presence and

background data as all having been generated together

by the following process: each sample is drawn

uniformly from L1 with probability fp (a presence
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sample) and uniformly from L with the remaining

probability (1� fp) yielding a background sample. If we

use PUA to describe probabilities under this use–

availability (UA) sampling model, then PUA (s ¼ 1 j x)
can be simply expressed in terms of g:

PUAðs ¼ 1 jxÞ ¼ 1

1þ r þ exp½�gðxÞ þ ln r� ð4Þ

where

r ¼ ð1� fpÞ
fp

p: ð5Þ

The SB method finds the parameters of g that maximize

the likelihood of the presence and background data as

described by Eq. 4; this can be done with some existing

logistic regression packages by describing Eq. 4 as a

user-supplied link function. The name of the method

derives from the observation that, although Eq. 4 is not

the standard binomial loss function, it can written as a

constant scaling factor (1/(1 þ r)) times a binomial loss

function.

The LI method

The LI method (Lancaster and Imbens 1996) is also

based on Eq. 4, but regards the species’ prevalence p as a

parameter to be estimated, rather than a user-supplied

value; a similar approach is described by Lee et al.

(2006). General-purpose nonlinear optimization soft-

ware can be used to simultaneously estimate values for p
and b that maximize the likelihood according to Eq. 4.

We note that Lancaster and Imbens (1996) also describe

an approach for estimating g if the species’ prevalence is

known, based on the generalized method of moments.

The approach is difficult and, to our knowledge, it has

not been applied in ecology due to lack of available

software; we therefore do not consider it further here.

METHODS

Our experimental evaluation considers the simple case

of a single predictor variable x whose values range

uniformly from 0 to 1 across the landscape. We study

seven simulated species whose probability of presence is

defined by the seven functions in Table 1. These

functions all range smoothly across the landscape, and

because they remain bounded between 0 and 1, they

define probabilities. They are chosen to represent a

variety of shapes of the response of a species to its

environment (constant, linear, convex, unimodal, s-

shaped), rather than particular functional forms. It is

important to note that these are simulated examples of

different species, but that the underlying model structure

that we will use is the same in all cases: logistic models

with linear and potentially quadratic terms.

Any practical method for modeling Pr(y¼ 1 j x) needs
to be robust enough to produce reasonable approxima-

tions across the likely range of species–environment

relationships, and our simulations fall within and

explore some of that range. Furthermore, species

respond to and interact with their environment in

complex ways, so the smooth response curves used here

are likely to be simpler than for real species. The

functions considered here can therefore be thought of as

simple cases that should be handled with ease by any

practical modeling method.

Some readers may note that outside of our simulated

landscape (with x in the range [0, 1]), some of these

functions fall outside the range [0, 1]. This is not a

concern, as the functions can be extended by defining

them to be either 0 or 1 for values of x outside of [0, 1].

Readers may also be concerned about the variable x

being bounded in our simulations; however, in any finite

landscape all variables will necessarily be bounded, and

our choice of 0 and 1 for the bounds is arbitrary and

does not affect our analysis.

We ran the five modeling methods on randomly

drawn data for each species, with 1000 presence samples

drawn according to the species’ probability of presence

and 10 000 background samples chosen uniformly from

[0, 1]. The number of presence samples is greater than

for most presence–background data sets, and the

samples do not suffer from any of the biases that plague

presence data in practice (Reddy and Dávalos 2003,

Phillips et al. 2009), so any practical modeling method

should at least make reasonable models from such a

large quantity of high-quality data.

For the ‘‘Quadratic’’ and ‘‘Gaussian’’ species, the true

response is unimodal, so quadratic terms were included

for all the modeling methods (i.e., we are allowing all

methods a reasonable chance of performing well). The

simulations were repeated 100 times and the model

output was compared both visually against the true

probability of presence, and statistically using root mean

square (RMS) error of fitted values compared against

true probability of presence. We used RMS because it

measures how well true probabilities are being estimat-

ed. We did not use AUC, as the latter is rank-based and

therefore insensitive to predictions all being incorrect by

a constant factor.

Some of the methods (SC, EM, and SB) require an

estimate of the species’ prevalence, for example, derived

from limited presence/absence surveys or expert opin-

ion, and there is likely to be some level of error in such

TABLE 1. Probability of presence for seven simulated species
used in the experimental evaluation.

Simulated species Probability of presence

Constant Pr(y ¼ 1 jx) ¼ 0.3
Linear Pr(y ¼ 1 jx) ¼ 0.05 þ 0.2x
Quadratic Pr(y ¼ 1 jx) ¼ 0.5 � 1.333(x � 0.5)2

Gaussian Pr(y ¼ 1 jx) ¼ 0.75 exp[–(4x � 2)2]
Semi-Logistic Pr(y ¼ 1 jx) ¼ 8/(1 þ exp[4 � 2x])
Logistic-1 Pr(y ¼ 1 jx) ¼ 1/(1 þ exp[4 � 2x])
Logistic-2 Pr(y ¼ 1 jx) ¼ 1/(1 þ exp[4 � 8x])

Note: The probability of presence of each species is a
function of a single environmental predictor, x, whose value
ranges uniformly from 0 to 1 across the landscape.
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an estimate. We therefore ran these methods first using

the true prevalence, then with the true value 60.1, in

order to assess the sensitivity of the methods to errors in

the prevalence estimate. Note that this additive error

corresponds to a large relative error in prevalence. For

example, for a species that is present in 20% of the

landscape, our sensitivity analysis uses prevalence

estimates of 0.1 and 0.3, respectively, corresponding to

relative errors of 650%, i.e., assuming the species is

present in 50% more sites than it really occupies, or half

as many sites.

We implemented all five model-fitting methods in R.

Their implementations are included in the Supplement,

along with R code for our experimental simulations.

RESULTS

Overall, the statistical comparison revealed a stark

contrast between two groups of methods: the methods

that make a strong parametric assumption (LI and LK)

and those that take the species’ prevalence as a

parameter (SC, EM, and SB). The LI and LK methods

had RMS errors that were greater than those of the

other methods for all simulated species, and approxi-

mately 10 times greater for all but one of the simulated

species (Fig. 1). Differences in performance within

groups were minor. When prevalence was mis-specified

by 60.1, the RMS error of the EM and SB methods

increased accordingly to ;0.1, which was much lower

than for the LI and LK methods in five of seven cases

(whiskers on EM and SB bars in Fig. 1). For SC, mis-

specifying the prevalence sometimes caused the pseudo-

likelihood to be unbounded above, and therefore

maximized by infinite coefficient values and yielding

predicted probabilities of exactly 0 or 1. Similar

behavior has been noted by Lancaster and Imbens

(1996), even for correctly specified prevalence. This

behavior would have to be carefully addressed in a

practical implementation of the method; here we simply

did not plot whiskers for SC in Fig. 1.

A visual inspection of model predictions also indicat-

ed a stark difference between the two groups when the

true probability of presence is not exactly logit-linear

(Fig. 2). LI models (left column; gray lines) and LK

models (right column; gray lines) do not appear close to

the true probability of presence (black lines). In

contrast, a single run of the SB method (black dots)

closely approximated the true probability of presence in

all cases. Mis-specification of prevalence resulted in

limited, but consistent, over- or under-prediction in the

SB method (black dashed lines). Results for the EM

method, and for the SC method with correctly specified

prevalence, were similar to SB.

FIG. 1. Root mean square (RMS) error of logistic models fitted to synthetic species distributions, each of whose probability of
presence is a function of one variable (details in Table 1). Training data consisted of 1000 presence samples and 10 000 background
samples chosen from a landscape with the predictor uniform in [0, 1]. Results shown are the mean of 100 simulations. Model
abbreviations are: SB, scaled binomial loss of Phillips and Elith (2011); EM, expectation-maximization approach of Ward et al.
(2009); SC, Steinberg and Cardell (1992); LI, Lancaster and Imbens (1996); LK, Lele and Keim (2006). Whiskers on the SB and
EM bars indicate the increase in RMS error when there is an additive error of 0.1 in the provided prevalence parameter. SB and EM
use glm for model fitting; other methods use the nlm function in R.
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The last two synthetic species in Table 1 (Logistic-1

and Logistic-2) conform to the assumptions of the LI

and LK models (i.e., they are logit-linear). For these

species, results were mixed (Figs. 1 and 3). All models

had reasonable statistical performance for the ‘‘Logistic-

2’’ species, but the LI and LK methods failed to produce

a good approximation of probability of presence for

‘‘Logistic-1.’’ Note that the probability of presence of

the ‘‘Logistic-1’’ species is exactly proportional to that of

the ‘‘Semi-Logistic’’ species, and therefore presence–

FIG. 2. Lele-Keim (left) and Lancaster-Imbens (right) models (gray lines represent 100 simulations) from simulated data (black
line). Models were fit to each data set using the nlm function in R. For comparison, three scaled binomial (SB) models were fit using
true prevalence (black dots) and true prevalence 610% (black dashed lines). The functions used for true probability of presence do
not have exactly linear or quadratic logit; the functions are (from top) Constant, Linear, Quadratic, Gaussian and Semi-Logistic.
See Table 1 for mathematical definitions of the functions. Quadratic terms were included in models for the Quadratic and Gaussian
cases. For each simulation, 1000 presence samples and 10 000 background samples were chosen from a landscape with the predictor
variable x uniform in [0, 1].
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background data for these two species are indistinguish-

able, as the distribution Pr(x j y¼ 1) is the same for both

species. The LI and LK models for these two species are

the same, except for random variation between simula-

tions (i.e., they identify no difference between these

‘‘species’’).

The high RMS errors of LI and LK can be attributed

in some cases to a large variation in model predictions

between simulations. As an example, the LI and LK

methods on the ‘‘Semi-Logistic’’ (or equivalently, the

‘‘Logistic-1’’) simulated species produced a wide spread

of estimated coefficient values (Fig. 4c, d), which

resulted in a broad range of estimated probability of

presence (Fig. 4a). Although the LI and LK methods

will converge to a stable combination of model

parameters, given enough data (black square in Fig.

4c, d; black dashed lines in Fig. 4a), 1000 presence

samples and 10 000 background samples were not

sufficient to achieve convergence. The LI and LK

methods did, in contrast, produce accurate estimates

of relative probability of presence, i.e., they yielded

accurate resource selection functions (RSF), as can be

seen when rescaling the models so that the prediction at

x¼ 1 matches the true probability of presence (Fig. 4b).

They did not yield good resource selection probability

functions (RSPF) (i.e., correct probabilities) because the

constant of proportionality is not close to 1.

DISCUSSION

We surveyed maximum-likelihood-based methods for

logistic modeling of species’ probability of presence (or

probability of use) from presence–background (or use–

availability) data. The methods fall into two camps: the

LI (Lancaster and Imbens 1996) and LK (Lele and

Keim 2006, Royle et al. 2012) methods use a strong

parametric assumption to make probability of presence

identifiable, whereas the EM (Ward et al. 2009), SC

(Steinberg and Cardell 1992), and SB (Phillips and Elith

2011) methods require the user to supply an estimate of

the species’ population prevalence.

Our experiments show that for many reasonable

responses of a species to its environment, the methods

that use a strong parametric assumption (LI and LK)

fail to adequately estimate the species’ true probability

of presence from presence–background data. Our

comparison is not on a level playing field, as the LI

and LK methods use less data than the others. The

important finding of our experiments is not the obvious

fact that the additional datum used by SC, EM, and SB

is helpful, but that it is required (except in special cases,

which we will discuss), in contrast to claims by Royle et

al. (2012).

Real species interact with their environment in

complex ways, so the smooth response curves that we

have considered here should be thought of as straight-

forward examples that any practical model should

handle with ease. We therefore join Ward et al. (2009)

in strongly recommending against methods that rely on

the strong parametric assumption. The only methods

that we can recommend for making maximum-likeli-

hood-based logistic models of species’ probability of

presence from presence-only data are the EM, SC, or SB

methods, all of which require a user-supplied estimate of

prevalence.

The motivation for the methods with the strong

parametric assumption is the desire to estimate absolute

FIG. 3. Lele-Keim (left) and Lancaster-Imbens (right) models (gray lines) from simulated data (black line). Simulations were
performed as for Fig. 2; scaled binomial (SB) models with true prevalence (black dots) and true prevalence 610% (black dashed
lines) are also shown. The functions are (from top) Logistic-1 and Logistic-2; in both cases, the true probability of presence has
linear logit. See Table 1 for mathematical definitions of the functions.
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probability of presence from presence-only data without

the extra fieldwork required to estimate prevalence.

However, we show that these methods are very fragile;

they can give very bad estimates, even when the

experimental or empirical data deviate only slightly

from the strong assumption. Moreover, the strong

assumption will generally be false for real species data:

there is no reason to expect the probability of presence

of any species to exactly match any particular model

structure, as all models are approximations. Although it

is obviously possible to make the LI and LK models

more complex by use of quadratics, interactions, splines,

different link functions, and so forth, their problem is

not lack of complexity. Additional complexity was not

necessary in our experiment, as evidenced by the good fit

of alternative methods (SC, EM, and SB) using the same

simple model structure (logistic models with linear and

potentially quadratic terms). Our message is that there is

no panacea for lack of data, and if one really wants

absolute (rather than relative) probabilities, there is

generally no alternative to collecting some data. Most of

our simulated species have probability of presence

whose logit is not exactly linear (or quadratic) in the

predictors, which is reasonable because linearity is

FIG. 4. Lancaster-Imbens and Lele-Keim models for the Semi-Logistic simulated species with Pr(y¼ 1 j x)¼ 8/(1þ exp[4� 2x])
(black line), made using 1000 presence samples and 10 000 background samples from a landscape with the predictor variable x
uniform in [0, 1]. Models were fit for 100 simulations using the nlm function in R. (a) One hundred LI models (gray), and the
maximum-likelihood estimate that LI would produce given unlimited data (Pr(y¼1 jx)¼1/(1þ exp[4� 2x]), black dashes). An EM
model (black dots) is shown for comparison (only one simulation shown; others simulations were similar). (b) LI models after
rescaling so that predictions at x¼1 match the true probability of presence. (c) LI fitted parameters b0 and b1 (open circles) and true
parameter value (black square). (d) LK fitted parameters b0 and b1 (open circles) and true parameter value (black square).
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always only an approximation to the complexity of

ecological phenomena (Bio et al. 1998). However, in all

cases, the true probabilities are well approximated by the

EM, SB, and SC logistic methods, demonstrating that

the logit is reasonably close to linear (or quadratic) in

the predictors, yet the LI and LK methods failed to give

useful estimates of the species’ probability of presence.

When the logit of probability of presence is exactly

linear (and not constant), the LK and LI methods will

converge to the true probability of presence, given

enough data (Lancaster and Imbens 1996, Lele and

Keim 2006; see also section The LK method ). Never-

theless, 1000 presence samples were insufficient for

convergence in one of our two simulated species.

The strong assumption of the LI and LK methods

makes them very different from standard logistic (or

other parametric) methods for presence–absence data:

they are not ‘‘conventional likelihood methods’’ (Royle

et al. 2012). With presence–absence data, logistic

regression is appropriate and can be expected to give

useful predictions whenever the predictors and their

transformations (sensu Elith et al. 2011) are chosen so

that the logit of the true probability of presence is

approximately linear. If the true partial response to a

predictor is unimodal, useful predictions can be made by

adding a quadratic term to a logistic regression model,

even if the true response is not exactly quadratic. In

contrast, the LI and LK methods rely on the response

exactly matching the form of the parametric model (e.g.,

see Lele and Keim 2006:3023), rather than approxi-

mately so, in order to identify prevalence, given enough

data. However, our Logistic-1 species shows that even

thousands of presence records might not suffice.

Although the distinction between ‘‘exactly matching’’

and ‘‘approximately matching’’ might seem slight, we

have shown that it has important consequences; when

the strong assumption is false, the resulting estimates of

probability of presence can be far wrong. We argue that

the poor performance of these methods largely derives

from the fact that any model is necessarily only an

approximation to the true complexity of a species’

response to its environment. Furthermore, as noted by

Ward et al. (2009) and Royle et al. (2012), and further

demonstrated here, the LI and LK methods can be

unstable, requiring large amounts of data to converge to

the optimal parameters, even when the strong assump-

tion is true. If the species’ prevalence is low (below 0.2),

the LI method may not converge to a solution

(Lancaster and Imbens 1996).

The EM, SC, and SB methods generally perform well

in our experiments, given an estimate of prevalence, and

they therefore warrant further experimentation on more

realistic species data. When and how should these

methods be used? The reason for, and advantage of,

using these methods is to obtain an approximately

unbiased estimate of absolute probability of presence, in

contrast to established methods for estimating relative

suitability such as Maxent or a RSF (Manly et al. 2002,

Elith et al. 2011). Without true probabilities, it is

difficult to compare across species in a given region for

conservation planning, for example, or to know how

likely it is that a species will occur at a site. Relative

values can be useful but are often harder to work with in

practice. The SB and EM approaches build on existing

model-fitting methods, so all the usual features of the

model in which they are included (ability to plot fitted

functions, predict to mapped data, and so on) are

available. They are useful as long as there is a reasonable

possibility of making a reasonable estimate of preva-

lence. Such an estimate may be difficult to obtain. For

example, if the species is cryptic and/or the sites are large

grid cells, determining whether the species is present in

even a small set of random sites may be prohibitively

difficult or expensive. In that case, it is better to use

methods like MaxEnt or resource selection functions

and to work within the limitations of relative probabil-

ities of presence. Using a substantially wrong estimate of

prevalence (e.g., prevalence of 0.6 for a species that is, in

reality, rare and restricted to one small part of the

landscape), would result in EM and SB models that

either broadly over-predict or under-predict the true

probabilities, and can cause the SC method to yield

infinite parameter values.
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SUPPLEMENTAL MATERIAL

Supplement

R script files to perform the simulations of Figs. 1–3 (Ecological Archives E094-125-S1).
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